Auxiliary matrices for the six - vertex model at q N = 1 and a geometric interpretation of its symmetries

نویسنده

  • Christian Korff
چکیده

The construction of auxiliary matrices for the six-vertex model at a root of unity is investigated from a quantum group theoretic point of view. Employing the concept of intertwiners associated with the quantum loop algebra Uq(s̃l2) at qN = 1 a three parameter family of auxiliary matrices is constructed. The elements of this family satisfy a functional relation with the transfer matrix allowing one to solve the eigenvalue problem of the model and to derive the Bethe ansatz equations. This functional relation is obtained from the decomposition of a tensor product of evaluation representations and involves auxiliary matrices with different parameters. Because of this dependence on additional parameters the auxiliary matrices break in general the finite symmetries of the six-vertex model, such as spin-reversal or spin conservation. More importantly, they also lift the extra degeneracies of the transfer matrix due to the loop symmetry present at rational coupling values. The extra parameters in the auxiliary matrices are shown to be directly related to the elements in the enlarged center Z of the algebra Uq(s̃l2) at q N = 1. This connection provides a geometric interpretation of the enhanced symmetry of the six-vertex model at rational coupling. The parameters labelling the auxiliary matrices can be interpreted as coordinates on a hypersurface SpecZ ⊂ C4 which remains invariant under the action of an infinite-dimensional group G of analytic transformations, called the quantum coadjoint action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auxiliary matrices for the six - vertex model at q N = 1 and a geometric interpretation of its symmetries Christian Korff

The construction of auxiliary matrices for the six-vertex model at a root of unity is investigated from a quantum group theoretic point of view. Employing the concept of intertwiners associated with the quantum loop algebra Uq(s̃l2) at q N = 1 a three parameter family of auxiliary matrices is constructed. The elements of this family satisfy a functional relation with the transfer matrix allowing...

متن کامل

Auxiliary matrices for the six - vertex model at q N = 1 II . Bethe roots , complete strings and the Drinfeld polynomial

The spectra of recently constructed auxiliary matrices for the six-vertex model respectively the spin s = 1/2 Heisenberg chain at roots of unity are investigated. Two conjectures are formulated both of which are proven for N = 3 and are verified numerically for several examples with N > 3. The first conjecture identifies an abelian subset of auxiliary matrices whose eigenvalues are polynomials ...

متن کامل

Auxiliary matrices for the six-vertex model and the algebraic Bethe ansatz

We connect two alternative concepts of solving integrable models, Baxter’s method of auxiliary matrices (or Q-operators) and the algebraic Bethe ansatz. The main steps of the calculation are performed in a general setting and a formula for the Bethe eigenvalues of the Q-operator is derived. A proof is given for states which contain up to three Bethe roots. Further evidence is provided by relati...

متن کامل

Auxiliary matrices on both sides of the equator

The spectra of previously constructed auxiliary matrices for the six-vertex model at roots of unity are investigated for spin-chains of even and odd length. The two cases show remarkable differences. In particular, it is shown that for even roots of unity and an odd number of sites the eigenvalues contain two linear independent solutions to Baxter’s TQ-equation corresponding to the Bethe ansatz...

متن کامل

New R - matrices from Representations of Braid - Monoid Algebras based on Superalgebras

In this paper we discuss representations of the Birman-Wenzl-Murakami algebra as well as of its dilute extension containing several free parameters. These representations are based on superalgebras and their baxterizations permit us to derive novel trigonometric solutions of the graded Yang-Baxter equation. In this way we obtain the multiparametric R-matrices associated to the U q [sl(r|2m) (2)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003